Am I Ready for Advanced Trigonometry?

These questions are meant to help you gauge your readiness for Non-Euclidean Geometry. Getting the correct answers (which are on the last page) is a good, using a method that works in additional cases is better, but understanding *why* is the gold standard, and one that only you can assess. If you need to use technology to answer more than one of these questions, you are probably not a good fit.

1. A triangle has side with a = 7, b = 15, and c = 20. Find the measure of angles A, B, and C.

$$\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}$$

- 2. Compute $\cos(\pi/12)$ exactly.
- 3. Suppose $a=12,\,b=10,$ and $m\angle C=75^{\circ}$. Calculate the area of $\triangle ABC$ exactly.

4. Find all values of θ that satisfy the following equation $(0 \le \theta < 2\pi)$

$$\sec(\theta) + \cos(\theta) + 1 = \tan(\theta)\sin(\theta)$$

5. Given an equilateral triangle with side-length 1, what is the side-length of the largest square that can fit inside of it?

Am I Ready for Advanced Trigonometry?

August 21, 2024

Answers:

- 1. Using Law of Cosines: $A = \arccos\left(\frac{24}{25}\right)$, $B = \arccos\left(\frac{4}{5}\right)$ and $C = \arccos\left(-\frac{3}{5}\right)$.
- $2. \ \frac{1+\sqrt{3}}{2\sqrt{2}}$
- 3. $15\sqrt{2}(1+\sqrt{3})$
- 4. Simplify to $2\cos(\theta) + 1 = 0$, so $\theta = \frac{2\pi}{3}$ and $\frac{4\pi}{3}$.
- 5. $2\sqrt{3} 3$